

EG 2007, 3.9.-7.9. Prague

Global Illumination using Photon Ray Splatting

Robert Herzog* Vlastimil Havran[‡] S. Kinuwaki^{*} K. Myszkowski^{*} H.-P. Seidel^{*}

> *MPI Informatik [‡]Czech Technical University Prague Germany Czech Republic

Motivation:

Filling the gap between photon density estimation and final gathering

Related Work

- Ray Maps for Global Illumination, [Havran et al., EGSR 2005]
 - Gathering of photon rays for a disc in the tangent plane
 - + Eliminates boundary bias
 - Complex and memory demanding search data structures
- Scalable Photon Splatting for Global Illumination, [Lavignotte el al., Graphite 2003]
 - + Efficient image based photon splatting approach with adaptive bandwidth selection
 - Restricted to triangle meshes and only diffuse light transport towards camera
- Radiance Caching for Efficient Global Illumination Computation, [Křivánek et al., IEEE TVCG 2005]
 - State-of-the-art for (ir)radiance caching on diffuse and glossy surface

Density Estimation Metrics

Photon density estimation for a disc in the tangent plane [Ray-maps, Havran et al. EGSR '05]

Cosine-weighted photon density estimation in rayspace [Eurographics '07]

Ray Splatting instead of Gathering

 Efficient gathering of photon rays intersecting a sphere needs complex search data structures (e.g. ray maps [Havran et al. 05])

planck institut

informatik

rgb

ω

 $K_h(r)$

- Our solution: photon ray splatting instead of gathering
- Boils down to search over point data

Choosing the Bandwidth (Splat-radius)

- Photon density estimation needs adaptive bandwidth selection
- Various statistical methods for bandwidth selection exist though often too complex to be used for efficient photon density estimation
- Common k-nearest-neighbor (k-nn) method is computational intensive
 - \rightarrow Either costly search for each density estimation query (*gathering* methods)

planck institut

informatik

- \rightarrow Or costly precomputation of the k-nn radius per photon (*splatting* methods)
- <u>Remedy</u>: exploit knowledge from photon sampling, i.e. choose a photon's splatting radius according to *photon path probability density*
- We get this almost for free !!!

Adaptive Bandwidth Selection

Choose the photon bandwidth inversely proportional to its path probability density

planck institut

informatik

- Reliable estimate only for a small number of bounces (1 to 2)
 - Need to slightly modify formula to become robust \rightarrow
 - \rightarrow See paper for details!

Color-coded visualization of the bandwidth (shown as photon splats)

2. bounce

Efficient Nearest Neighbor Search

 Nearest neighbor search for ray splatting is simpler than for ray gathering (e.g. ray maps [Havran et al. EGSR05])

olanck institut

informatik

- Boils down to a search for point samples in a cylindrical bounding volume
- We use a standard kd-tree constructed on top of the eye samples with axis-aligned spatial splitting planes

(Ir)radiance Caching

- Computation of (ir)radiance for each pixel is still too slow
- However, irradiance function is really smooth due to lowpass filtering via density estimation
- \rightarrow sparse sampling of the (ir)radiance is sufficient
- We propose an algorithm similar to *cache splatting* [Gautron et al., EGSR '05] in the spherical harmonics basis
- Cache interpolation gives additional filtering of noisy photon splats → reduce overall splat radius → more efficient ray splatting

Radiance Cache Splatting

Multi-Pass Radiance Cache Splatting

Cache locations (red) + cache weights

Pass 1

Pass 2

Pass 3

max planck institut

informatik

Results: Diffuse Sibenik Scene

- 500,000 indirect diffuse photons
- 512 x 512 image resolution
- Compared against reference (photon mapping + final gathering)

Final gathering (1200 rays per pixel) e

Photon density estimation (500 k-nn)

29 sec

Photon ray splatting

35 sec

Ray splatting with caching and filtering

20 sec

max planck institut

informatik

~4000 sec

Results

69 sec (400 k-nn)

K-nn Photon Density Estimation

(with radiance caching)

Photon Ray Splatting

63 sec (16 sec)

500 ×500 pixel, 500.000 photons

66 sec (600 k-nn)

64 sec (20 sec)

1000 ×1000 pixel, 300.000

92 sec (400/ 250 k-nn)

52 sec

Two-Pass Final Gathering

Ray splatting (600 rays) ~ 64 min Photon mapping (70 k-nn 600 rays) ~ 85 min

Conclusions

- Ray density estimation as trade-off between photon density estimation and final gathering
- + No boundary bias, no topological bias
- + Works well with (ir)radiance caching
- However, still problems with proximity bias (light leaking)
 - \rightarrow requires occlusion testing (future work)

(see [Herzog, Pacific Graphics '07])

→ only low-frequency (indirect) illumination can be rendered so far

More details provided in a technical report (coming soon)

Occlusion Testing

Current splatting neglects occlusion in the footprint

Correctly masking the density estimation kernel